ทฤษฎีกราฟเบื้องต้น

1. กราฟ กราฟเป็นแบบจำลองทางคณิตศาสตร์ ซึ่งใช้จำลองปัญหาบางปัญหาโดยเขียนแผนภาพที่ประกอบด้วยจุดและเส้น ปัจจุบันมีการนำทฤษฎีกราฟมาประยุกต์ใช้ในศาสตร์สาขาต่าง ๆ
เช่น วิทยาศาสตร์ สังคมศึกษา เศรษฐศาสตร์ พันธุศาสตร์ วิศวกรรมศาสตร์ เป็นต้น บทนิยาม กราฟ G ประกอบด้วยเซตจำนวน 2 เซต คือ
1. เซตที่ไม่เป็นเวตว่างของจุดยอด (vertex) แทนด้วยสัญลักษณ์ V(G) 2. เซตของเส้นเชื่อม (edge) ที่เชื่อมระหว่างจุดยอดแทนด้วยสัญลักษณ์ E(G) ดีกรี
ดีกรีของจุดยอด



จะเห็นว่า เส้นเชื่อมที่เกิดกับจุดยอด a ได้แก่ เส้นเชื่อม ab และ ac ดังนั้น จำนวนครั้งทั้งหมดที่เส้นเชื่อมเกิดกับจุดยอด a คือ 2 สำหรับจุดยอด b มีเส้นเชื่อมที่เกิดกับจุดยอด b
ได้แก่ เส้นเชื่อม ba, bc และ bb เป็นวงวน เกิดกับจุดยอด b กรณีที่มีเส้นเชื่อมเป็นวงวนจะกำหนดให้นับจำนวนเส้นเชื่อมที่เกิดกับจุดยอดนั้นเพิ่มขึ้น โดยให้นับเส้นเชื่อมที่เป็นวงวน 1 วง
วงวนเป็น 2 ดังนั้นจำนวนครั้งทั้งหมดที่เส้นเชื่อมเกิดกับจุดยอด b จึงเป็น 4บทนิยาม ดีกรี (Degree) ของจุดยอด V ในกราฟ คือ จำนวนครั้งทั้งหมดที่เส้นเชื่อมเกิดกับจุดยอด v
ต่อไปจะเรียกจำนวนครั้งทั้งหมดที่เส้นเชื่อมเกิดกับจุดยอดว่า ดีกรี ใช้สัญลักษณ์ deg v แทนดีกรีของจุดยอด v ตัวอย่างที่ 1 กำหนดกราฟ ดังรูป


จากรูปจะได้ว่า deg a = 2
deg b = 1
deg c = 3
deg d = 4 ตัวอย่างที่ 2 กำหนดกราฟ ดังรูป